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Abstract

An accurate estimate of camera overlap is a key enabler for
efficient network-wide surveillance processing (e.g. inter-
camera tracking), especially in large-scale surveillance net-
works. Techniques based on contradictions in pair-wise oc-
cupancy data, such as the exclusion approach, have advan-
tages in robustness and efficiency that make them particu-
larly well suited for large surveillance networks. Correla-
tion techniques share some of these advantages, but have
a better understood statistical basis. This paper evaluates
a set of contradiction and correlation techniques, using a
novel metric, search space precision-recall. This metric
reflects the activity-based overlap estimation required for
camera handover, such as would be used in inter-camera
tracking. Results are reported for a range of networks,
including a 24-camera network set up in an office space,
where the exclusion estimator showed the best performance.

1. Introduction
Video surveillance networks are increasing in scale with

networks of multiple thousands of cameras common. For

example, the Washington D.C. police have a network of

over 5,000 cameras [4] and Singapore’s Local Transport

Authority runs a network of nearly 6,000 cameras [5]. The

scale of these networks demand software assistance for hu-

mans to make sense of the vast amounts of data produced.

Assistance is required both for live monitoring, and for

forensic analysis of events of interest. Computer vision re-

search has made significant progress in automating the pro-

cessing of this data on the small scale (see [10] for a survey),

but there has been less progress in scaling these techniques

to the much larger networks now being deployed.

Recent approaches for analysing large surveillance net-

works have focused upon providing important network-

wide services supporting visual processing. A key exam-

ple is the estimation of the camera overlap of a surveillance

system, or its related activity topology [11], which facili-

tate processes such as inter-camera tracking. The activity

topology is a graph which describes the spatial and tempo-

ral relationships between the fields of view of the network’s

cameras that can be obtained from observed activity in the

network. An accurate estimate of an activity topology sup-

ports efficient camera handover where activity moves from

one camera to another adjacent camera in the system.

An important sub-graph of the activity topology is the

activity-based camera overlap graph, which includes only

edges relating cameras having commonality (i.e. overlap)

in their fields-of-view. This sub-graph is easier to obtain by

relating activity across cameras. We further consider each

field of view as a regular grid of regions, or cells, which

may overlap [11]. By this we aim to produce a more refined

overlap estimate to better facilitate processes such as inter-

camera tracking by reducing the search space size required

to find a given object in a new camera.

The main contribution of this paper is a novel method for

evaluating approaches to estimating camera overlap graphs.

We propose a search space-based precision-recall curve to

evaluate the likely candidates to improve the estimated over-

lap between cameras to assist subsequent inter-camera pro-

cesses. This search space-based evaluation is performed for

four estimation methods on a number of networks, includ-

ing a 24 camera office network.

2. Camera Overlap Estimators
This section describes several methods which have been

implemented within a software framework for estimating

camera overlap from object activity within a camera net-

work. These approaches are built upon the extraction

of moving objects from the background in each camera

view [9] and the use of this foreground activity to estimate

the relationship between cameras. As in [11], each camera’s

field of view is considered to be a regular rectangular grid
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of cells. A cell is considered to be occupied when it con-

tains the lowest visible point of an object observed in that

frame of the camera’s video stream, otherwise it is unoccu-

pied. If a camera is inactive at any point, then its cells are

considered inactive. The occupancy of cells over time can

be analysed using the following methods:

• The exclusion approach [11].

• An approach based on mutual information[8].

• An approach based upon conditional entropy [1].

• The lift operator patented by Intellivid [2].

Similarities between the approaches have been factored

into the software of the evaluation framework. Thus it main-

tains data summarising cell occupancies, and applies a se-

lected method to analyse this data. This is done for each

possible pair of cells based upon their joint occupancy. By

keeping track of inactive cell states, the framework is robust

to camera outages, as periods of camera inactivity do not ad-

versely affect the information that can be derived from the

active cells. The implementations reported in this paper use

a single centralised implementation of the framework, it is

suitable for distribution via a generic partitioning approach,

such as that described in [3].

The various approaches can be implemented as either

contradiction or correlation approaches. In contradiction

approaches all overlap links are considered possible, with

processing resulting in evidence against camera overlap.

The accumulation of this evidence leads to the removal of

links from the camera overlap graph. In correlation ap-

proaches all links are considered non-overlapping until pro-

cessing results in evidence that they overlap. The accumu-

lation of this evidence leads to the addition of an edge into

the camera overlap graph.

For contradiction approaches, it is valid to apply process-

ing for a given pair of cells over an arbitrary subset of the

time points. A small or poorly selected subset reduces the

probability that contradictions are found; however it does

not reduce the evidentiary value of any contradictions that

are found. This may lead to extra links in the overlap graph,

though true overlaps should not be affected.

Correlation approaches build the overlap graph on evi-

dentiary links and require the set of time points processed

to be a statistically valid sample of the complete set of time

points. This could be the complete set, if available. Process-

ing only a subset of the available time points will reduce the

probability of finding true links in the overlap graph, though

there are likely to be less false links.

When cameras are off-line, correlation approaches may

be degraded to a greater degree than the available signal,

whilst degradation of contradiction approaches are likely to

be more proportional to the reduction in signal. This sug-

gests that contradiction approaches could be more robust to

missing camera signals than correlation approaches.

2.1. Exclusion Estimator

Exclusion is based on the fact that if, at given points in

time, cell i is observed to be occupied and cell j is observed

to be unoccupied, then cells i and j do not overlap (i.e.
there is evidence contradicting overlap). Efficient practi-

cal implementation requires several extensions of the basic

exclusion principle: i) lowest visible extent applied to fore-

ground blobs to place cells i and j on the same solid surface,

ii) accumulation of contradictions over time to improve effi-

ciency and to overcome errors in the occupancy signal out-

put by foreground detection, iii) exploitation of the bidirec-

tional nature of overlap to strengthen the evidentiary value

of exclusions and iv) temporal padding of the occupancy

signal to overcome clock skew and codec latency effects.

2.2. Mutual Information Estimator

An approach derived from information theory can be

based on the mutual information of cell pairs [8]. The

mutual information (I) represents the amount of depen-

dence between two given variables. The mutual informa-

tion, I(X; Y ) for two occupancy cells represented as binary

random variables X and Y is given by:

I(X; Y ) =
∑

y∈Y,x∈X

pXY (x, y)log
(

pXY (x, y)
pX(x)pY (y)

)
(1)

In our correlation estimator, high values of I(X; Y ) indi-

cate a high degree of dependence, and thus a high probabil-

ity of overlap.

2.3. Conditional Entropy Estimator

Another approach from information theory is conditional

entropy [1]. Conditional entropy quantifies the amount of

entropy remaining about a random variable when a second

random variable is already known. For the overlap case, one

would expect the conditional entropy to be minimal where

cells are overlapping. The conditional entropy, H(X|Y ) for

two occupancy cells represented as binary random variables

X and Y is given by:

H(Y |X) = −
∑

y∈Y,x∈X

pXY (x, y)log pXY (y|x) (2)

Low values of H(Y |X) are expected to indicate high prob-

ability of overlap in our correlation estimator.
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2.4. Lift Correlation Estimator

Comparing areas with differing traffic levels may lead to

occupancy data being less statistically balanced. One could

measure the independence of X = 1 and Y = 1 rather than

the independence of the variables X and Y in order to try

and observe a greater signal. One operator that attempts this

is lift(X,Y) [2] which can be described as:

lift(X, Y ) =
pXY (1, 1)

pX(1)pY (1)
(3)

Values of lift significantly greater than 1.0 provide correla-

tion evidence of overlap.

3. Evaluation: Search Space Precision-Recall
One purpose for a camera overlap estimate is to support

processes that analyse activity as it moves from camera to

camera, termed inter-camera processes. The most obvi-

ous such process is tracking targets within a camera view

(intra-camera), and using overlap estimates to assist track-

ing across camera views (inter-camera). A tracking process

achieves this by identifying in the overlapping camera the

best entry point for the track given its exit point. This is

selected by exploring the search space (for example, using

appearance descriptors such as [6]) to identify activity that

corresponds best to the target.

In practice targets tend to be moving, so the search space

for a given point should reflect this by including a neigh-

bourhood around each overlap point. This neighbourhood

can be defined as an area within a specified distance of the

overlap point in a camera’s field of view. In this work we

split the camera view into a regular grid of cells, using 12

cells horizontally and 9 cells vertically per camera. We de-

fine the neighbourhood of a given cell as including the eight

adjacent cells. We propose that the appropriate metrics for

evaluating the accuracy of an overlap estimate are preci-
sion and recall of the inter-camera search space, rather than

the overlap estimate. This search space better reflects likely

candidates for continuing the inter-camera processes.

Precision and recall are standard metrics for the accu-

racy of a classifier, particularly in the information retrieval

context [7]. Given a classifier with true positives, TP , false

positives, FP , and false negatives, FN , the precision P is

given by:

P = TP/(TP + FP ) (4)

and the recall, R is given by:

R = TP/(TP + FN) (5)

A threshold is applied to select which links are considered

overlapping, and is varied to generate the precision-recall

(P-R) curve. The thresholds required to obtain the entire

P-R range of interest depend on the technique that is being

used, and a sensible range of values will often need to be

selected by hand.

(a) Ground truth

(b) Estimate

X ?

$

True Positive

False Negative

False Positive?

$

X

(c) Cell classification

Figure 1. Overlap for a cell in ground truth and estimate.

Figure 1 illustrates a simple case where a cell in one cam-

era overlaps with two cells in another camera. Figure 1(a)

shows the ground truth overlap, whereas Figure 1(b) shows

the estimated overlap. Figure 1(c) shows the classification

of cells in the second camera as true positives, false posi-

tives, and false negatives, as determined by comparing the

estimated overlap to the ground truth. There is one true

positive, one false positive and one false negative, so the

overlap precision is 0.5 and the overlap recall is 0.5.

Figure 2 illustrates the same case as Figure 1, but in

terms of search space instead of overlap. Similarly, Fig-

ure 2(c) shows the classification of cells in the second cam-

era as true positives, false positives, and false negatives, as

determined by comparing the estimated search space to the

ground truth search space. In both cases the neighbourhood

used in searching is a distance of one cell. There are 11
true positives, 3 false positives and 1 false negative. Here,

search space precision is 11/14 and search space recall is

11/12.

For most processes using camera overlap to define an

inter-camera search space, search space recall is more sig-

nificant than search space precision. This is because any-

thing less than 1.0 for search space recall means that parts
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Figure 2. Search space for a cell in ground truth and estimate.

of the correct search space for a cell are not being searched,

and targets may therefore be lost as they move between

cameras. In contrast, search space precision less than 1.0
means merely that the search space is larger than it should

be. Thus the processes using that search space are less effi-

cient, but their results are no less accurate than for searching

unaided by an activity topology. Notice that for the case il-

lustrated in Figure 2(c), the effect of the error in overlap es-

timation is less severe on search space recall than on search

space precision. This contrasts with the situation in Fig-

ure 1(c), where the effects on overlap precision and recall

are the same. Thus the search space precision and recall

metrics reflect the priority of recall over precision in typical

applications using the topology.

4. Results

This section presents the experimental results of each of

the methods on three data sets: two five camera data sets

obtained in an artificial environment, and a 24 camera data

set from a realistic indoor environment. The two five cam-

era data sets were obtained from the same camera setup, and

therefore share a ground truth. They differ in their length,

and the objects that were recorded moving in their view.

The 24 camera data set was obtained from cameras spread

throughout the corridors of an office.

4.1. Five Camera Car Data Set

The five camera car data set was obtained from a set

of cameras whose overlapping views centre on a common

clear ground plane. A detailed ground truth topology of

camera overlap was determined by hand for this small data

set. This was achieved using markers laid out on the floor

which could be matched across the cameras in the observa-

tion area. Figure 3 shows the layout of the cameras with

a set of coarse grids to demonstrate the overlapping views.

The overlap ground truth for a cell was derived by consid-

ering any cell in another camera as overlapping where any

portion of it was overlapping the given cell. The experi-

mental data used to determine the activity topology was ob-

tained by driving one of two remote controlled cars through

the area and capturing over 30 minutes of footage.

Figure 3. Ground truth overlap for the five cameras

This is the simplest of the data sets, which is reflected

in the good precision-recall curves in Figure 4(a). These

results show that although the mutual information estima-

tor might slightly outperform the exclusion estimator, they

actually produce very similar precision levels for all recall

levels. They both outperform the lift estimator for low re-

call levels, though for a recall greater than 0.7, it becomes

indistinguishable from the other estimators. The conditional

entropy estimator produces fairly poor precision results, in-

dicating that a significant number of false overlap links are

being included.

4.2. Five Camera Walking Data Set

The five camera walking data set was obtained from ob-

servations of people walking through the same camera setup

shown in Figure 3. This data set therefore utilises the same

ground truth, but consists of a separate set of two hours of

footage. The people moving through the area had varying

directions, speeds, and were sometimes walking in groups.

This data is more challenging as the observed objects are

larger, can often occlude each other, and can incorrectly
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(a) 5 camera car data set
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(b) 5 camera walking data set
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(c) 24 camera data set

Figure 4. Comparisons of exclusion, mutual information, lift, and

conditional entropy for the available data sets

be merged together by the foreground detectors into larger

blobs. This reduces the quality of the occupancy data ex-

tracted, which affects the results of overlap estimation.

The results shown in Figure 4(b) demonstrate the re-

duced precision that was expected. The mutual informa-

tion estimator could be considered to have a marginal im-

provement in performance compared to the exclusion esti-

mator, especially for higher levels of recall. Both of these

estimators outperform the lift operator at low recall levels,

though not by as much as seen in the car data set. Con-

ditional entropy again performs very poorly, showing a sig-

nificantly lower precision level than was achieved on the car

data. The lower overall precision results are in part because

of the difficulty of the data. Some areas have low activ-

ity, where it is difficult to observe occupancy and establish

overlap links, whilst the occupancy becomes noisier due to

incorrectly merged objects. This is an aspect of the activity

topology that is difficult to overcome without using a spe-

cific calibration design such that activity occurs across the

entire camera views.

The lower precision may also occur from the inclusion

of links based on anti-correlation. This occurs where the

occupancy in one camera correlates with the correct link in

the other camera, as well as a region around it. Because ob-

jects from foreground detection are summarised to its low-

est point, adjacent cells will therefore definitely be unoc-

cupied. Links to these adjacent cells will be eliminated by

methods that require occupancy in both cells; however their

conditional entropy may still be low.

4.3. 24 Camera Office Data Set

The 24 camera data set was obtained from a network of

surveillance cameras installed in offices and corridors at the

University of Adelaide. They cover a number of corridors

inside the building, with a floor plan shown in Figure 5. The

cameras recorded many people moving around the area and

interacting over a four and a half hour period. This data

has a higher degree of difficulty and activity than the pre-

vious two data sets. Due to its size, the ground truth was

determined using camera to camera links rather than indi-

vidual cells. The estimated topologies were evaluated with

cell links being considered correct when they connected to

the appropriately overlapping camera view.

The results for this difficult data set show exclusion out-

performing the mutual information estimator. Both of these

estimators have significantly higher precision than the lift

estimator, whilst conditional entropy again produced very

poor results. The difference in results could be due to a

number of factors. Firstly, in this larger data set, there is

more unstructured activity. Some areas have high traffic for

significant periods of time, sometimes with large groups of

people, whilst other areas may have little or no activity. This

may make it difficult to find statistical links in the data. Ex-

clusion on the seems to be able to better exploit situations
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Figure 5. The floor plan showing the position of the cameras within

the 24 camera setup

where the data may hold portions demonstrating the non-

overlap of some areas. Some techniques may also be more

sensitive to the thresholding used and to noise in occupan-

cies, especially when trying to analyse lower traffic areas.

The anti-correlation effect may also reduce the precision of

the conditional entropy estimator. Another effect that could

be of significance is when cameras go off-line during the ex-

periment. This seems to negatively affect the ability of the

lift estimator in determining appropriate links for the less

reliable areas.

5. Conclusions

This paper has examined a number of techniques for es-

timating the topology of an overlapping surveillance net-

work. The techniques investigated are based upon the prin-

ciples of exclusion, mutual information, conditional entropy

and the lift operator. These techniques were evaluated using

search space-based precision-recall curves. The first two

simpler data sets consisted of 5 cameras with views overlap-

ping on an open ground plane, with either a moving remote

controlled car, or people walking through the area. In the re-

sults from this simpler data set, the mutual information and

exclusion methods both produced good results. The lift-

based estimator performed slightly worse, whilst the condi-

tional entropy estimator showed a lower precision. This in-

dicates excessive overlap connections, possibly made worse

by anti-correlation effects, where occupied cells are linked

strongly with unoccupied cells.

The office data set consisted of 24 cameras and had many

people walking around in the surveillance area, sometimes

in groups, for four and a half hours. Due to the higher ac-

tivity, this data set has significantly noisier occupancy data.

Whilst the lift estimator performed worse than mutual infor-

mation and exclusion, the conditional entropy results were

again particularly poor, possibly due to anti-correlation ef-

fects. The mutual information estimator does not perform as

well as exclusion, possibly because exclusion can eliminate

links in the overlap topology for which it has any contradic-

tory evidence.

These results show that a variety of correlation and con-

tradiction approaches can be used to obtain an overlap esti-

mate within a surveillance network, and that search space-

based precision-recall can be an effective way to evaluate

them. They have demonstrated that both exclusion and mu-

tual information are viable approaches that can outperform

other estimators on a realistic large and noisy data set.
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